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A MERQURY MANOMETER GRAVITY GRADIOMETER

by
G. lan Moore
Frank D. Stacey
Gary J. Tuck
Department of Physics

University of Queensland
Brisbane, Australia

ABSTRACT

We present the design of a gravity gradiometer based on the principles of
a mercury aanometer. The gradiometer consists of two identical manometers
separated vertically by 1 meter. The pressure difference required to support
the mercury columns is maintained in gas chambers above pools at each end of
the mercury columns and is servoed to keep the lower column height constant.
A change ia the vertical gravity gradient leads to a change in the upper colum
height. The column heights are monitored using capacitance micrometry. Using
the lower manometer as a pressure reference and servoing to a constant pressure

removes the requirements of absolute temperature stability and dimensional

stability of the pressure chambers.




A Mercury Manometer Gravity Gradiometer

G. lan Moore, Gary J. Tuck, Barry D. Goodwin and Frank D. Stacey.
Department of Physics
University of Queensland,

Brisbane Australia.

Inroduction:

The gravity group at the Physics Department of the University of
Queensland is currently developing a gradiometer based on the principles
ot a mercury manometer. The design hus the advantage of using relatively
simple technology and has a target sensitivity useful in both geophysical

surveying and fundamental gravitational experiments.

Design principle:

The principle of the gradiometer design 1is based on the simple
relationship between the height of a mercury column and the hydrostatic
pressure difference between the two mercury surfaces. By way of
introduction, consider a manometer as shown in Fig 1. This consists of
two mercury pools, separated by 0.5m and connected by a fine capillary
tube. The pressure difference required to support the height of the
mercury column is maintained in the gas chambers above each pool and is

simply given by,

b - = -]
ap = P - Py = pgH (1)

where p is the density of the mercury, g the acceleration due to gravity




and # the column height. Generally a manoacter is usced to detect changpes
in the pressure difference, however we are interested in keeping  the
pressure difterence constant and observing small changes in the local
gravitational acceleration by way of a change in the column height. Small
changes in this height can be monitcred using capacitance micrometry to
measure the changes in the gap between each mercury surface and a
stainless steel electrode fixed ubove it on the supporting framework.
Provided the requirement of constant pressure difference can be met, the
manumeter can be used as a simple vertical axis accelerometer or
gravimeter. A simple calculation shows that the absolute temperature must
be maintained to the swmme precision as that desired for the gravimeter.
For an instrument capable of detecting changes as small as 10—10 of g (the
effect due to a gradient of 1 E over a distance of 1 metre), this is
clearly impractical. Even to match the sensitivity of commonly used
gravimeters (10 wGal) requires a stability of order micro degrees Kelvin

which is extremely difficult.

The requirements for a very stable absolute temperature, a high
de-gree of dimensional stability in the gas chambers and perfect gas seals
make a useable gravimeter based on this principle impractical. Fortunately

these problems can be greatly reduced in the design of a gradiometer.

The gradiometer is formed by coupling two single manometers as shown
i Fig 2. The lower chambers of each manometer are connected by a small
tube as are the upper chumbers. The pressure difference across the pairs
of chambers 1s servoed by means of an adjustable bellows to maintain the
lower column height constant. Any change in the gravity difference acting
on the two columns due to a change in vertical gravity gradient will lead

to & smali chanyge in the height of the upper column.




Since the lower manometer now forms a precise pressure reference the
absolute temperature of the instrument is no longer important. It is only
necessary that temperature gradients along the length of the instrument be
kept small. Also, since the pressure chambers of the manometers are
dircctly coupled, any slight leak or dimensional change in any gas chamber

becomes a common mode signal and is removed by the pressure servo.

Dessign details:

I. Sensitivity:

As a basis for the design we take a target sensitivity of 1 ﬁ, equal

to that generally accepted as useful in terms of geophysical surveying.

For a column height of 0.5 m and a separation of 1 m between
corresponding pools of the coupled manometers as shown in Fig 2, a change
in gradient of 1 E gives rise to a change in the upper column height of
0.05 nm or half of this as the detectable change in the level of a pool.
This displacement comes close to the observable limit of the capacitance
micrometry technique used. This technique will be discussed in more detail

in part IV of this section.

The mercury puols act as pistons as the column heights change,
varying the gas volume and hence the supporting pressure. This effect
tends to stabilize the column heights against perturbations and therefore
would reduce the sensivity of a single manometer to gravitational changes.

However, in a differential instrument this problem does not arise because




we are concerned with height differences of mercury columns subjected to a

common pressure difference.
II. Thermal stabilization:

There are two requirements of the thermal stabilization of the
instrument. First, to maintain a stuble absolute temperature and second,
to maintain a constant (preferably zero) temperature gradient along the

length of the instrument.

The thermal expansion of the mercury dominates the stability problem
because we are concerned with thermal changes in its density relative to

the thermal expansion of the stainless steel framework of the instrument.

-4 -1 .
Hg =~ 2 x 10 K is the
-1

volume expansion coefficient for mercury and a = 1.7 x 10—5 K is the

The relevant parameter is (o, - ass) where a

Hg

linear coefficient for the stainless steel. If it were necessary to
obtain absolute accuracy of 1 part in 1010 in a single manometer then
absolute temperature stability of 0.5 pK would be required and this cannot
be realized. In a differential mode we formally require this precision in
the temperature difference between manometers and the thermal
stabilization system described below is targetted on this accuracy. This
looks a difficult target but we have an internal check on strong
tewperature gradients, because levels in all four mercury pools are
monitored. The instrument can actually measure the thermal expansion of
the mercury (relative to the plastic pools and the stainless steel) in
cach manometer independently, although it is not clear that this will be
directly useful and further developments to reduce thermal sensitivity are

under consideration.




[

There 1is a residual thermal problem if the two manoweters are
slightly different dimensionally, but assuming matched lengths of the
stainless steel spacing rods to better than 1 part in 104, which 1s ecasily
achieved, 0.05 K absolute temperature stability suffices to avoid this

problen.

The temperature stabilization system which we propose to use to
achieve the above requirements is shown in Fig 3. This consists of a
double circuluted water jacket, the temperature of the water being
controlled at a point just prior to the entry into the instrument jacket
by means of a heater and thermistor feedback. The water first circulutes
down the inner jacket and then back up the outer jacket. The outer casing
1s covered with closed cell insulation and the wall between the inner and
outer jackets 1s also well insulated. The instrument itself is housed
inside an inner casing. In principle it should be possible to achicve
temperature gradients of less than 2 x 10—6 K over the length of the
instrument at the inner water jacket for an external temperauture
controlled to within 1 K. The final passive shield consisting of a layer
of insulation over the copper instrument case should reduce this to less
thun the required 5 x 10_7 K over the length of the instrument. A
completely passive thermal shield (relying on thermal conduction rather
than a circulating media) which would achieve a similar resull is totally
iwpractical because of the large surface area to cross section ratio of

the shielding tubes.

[IT. Servo Bellows:

The servo bellows is currently driven in two stages. Firstly with a

coarse motor driven differential thread and secondly with a piezo-stack




for tine control. This 1s a temporary arrangement and the final servo s
lo be driven using an "inch-worw”" device which will give fine control over
a ringe of 6mm and remove the problems of bLucklash etc associated with the
mechanical drive. The large force exerted by the bellows on its drive 1s
overcome by placing the servo bellows in a chamber pressurised to very
nearly the same pressure as the lower munometer chambers to which the

bellows 1s connected.

IV. Detection System:

Between each pool and its corresponding gas chamber is an arrangement
of stiainless steel electrodes, detailed in Fig 4. This forms a fixed
capacitunce gap against which the capacitance between the mercury surfacc
and the central electrode is compared. The technique of capacitance
micromutry1 is described with reference to Fig 5. The wupper, tixed
electrode and the mercury are excited 1n antiphase with 3 kHz (3 Vpeak)
s1ghals derived from a switchable ratio transftormer. The resulting 3 khlz
s1ygnal on the central electrude is detected synchronously with the
excitulion signal. The ratio transformer switch setting is adjusted until
the detected signal is a null. The switch setting then gives a direct
reading of the ratio of the two gaps. The mercury gap is then calculated
from this ratio and the known fixed gap. Only the first five digits of
the ratio are obtained from the ratio trunsformer; three more digits are
vbtaiued by measuring the out of balance signal at the final ratio
trianstorner setting. Thus with cupacitance gaps of 0.2 mm the detector
sensitivity is better than 10“7 of this or <0.02 nm. This corresponds
approximately with the expected change in a single gap for a change 1in

<
pradient of 1 E.




An autoumatic ratio transformer bridge samples the four channels
corresponding to the upper and lower pools of cuch manometer under
computer control. The computer controls the pressure scrvo feedback loop

and provides automatic readout of the gaps and column heights.

V. Mercury Pool Floats:

Potentially the most significant problem and one which is currently
beinyg addressed 1s that of rippling of the mercury surfice when the
instrument is vibrated. This rippling causes two problems: First, slipght
impurities in the mercury make the mercury stick to the stainless steel
clectrodes when the gap is very small. Second, and more importantly from
a fundamental view point is that this rippling causes a bias in the
measured capacitance gaps. This 1is due to the fact that the average
reciprocal gap is measured and this is biased from the reciprocal of the

average gap when the mercury surface is not flat as shown Fig 6.

To overcome this problem, we intend to use stainless steel floats on
the: mercury pools. These will be constrained by flat stainless steel
springs to prevent them drifting to one side. The proposed arrangement is
shown in Fig 7. The springs are etched from 0.001" sheet (Fiy 8) and are
desigued to have a large compliance to motions perpendicular to their
plane and retain a high stiffness to motions in their plane. The floats
are rebated in order to avoid possible interference between the spring

leaves and their lower faces.

The floats rest on supports until the mercury pools are filled and

the spring anchors are machined so that the desired working gaps are




obtained with zero extension of the springs. This is important for two

reasons. First, the stiffness of the springs rises rapidly with large (‘
extensions and very compliant springs are required i¢ the sensitivity of

the 1nstrument is not to be reduced. Second, the natural bouyancy level or

the floats must not be significuantly altered by the springs. In the

absence of springs the floats would always float at the same level in the

mercury regardless of the gravitational acceleration. Since the springs

may exert a no:-zero force in the vertical direction, this will no longer

be true as illustrated in Fig Y.

M ks

5= =t --=(2)
K Py Pos)  EALRY

where. .
& is the flotation level of a float
M is the mass of a float ‘
A 1s the cross sectional area of a float ‘
pHg and Py are the desities of mercury and stainless steel
s is the effective operating extension of the paired springs

k is the effective spring constant of the paired springs

llence 1t the gravitational field changes (for example with a gain in
altitude) the level at which the floats ride in the mercury will change
for euach individual float, thereby voiding the measurements. Assuming a
chuange 1n gravity of one part in 104 and requiring the natural flotation
level of the floats to remain constant within the tolerance implied by the

target sensivity gives the following condition,

SS

ks x 1074 0.2 x 10710 4 ———(3)




Assuming the operating extension of the spring can be kept to less than
0.1 mm this gives an upper limit on the spring constant of 0.14 Nm-l. So
the springs must be extremely compliant, at least over the very limited

range of extensions expected during operation.

References:

l: STACEY, F.D., RYNN, J.M.W., LITTLE, E.C. and CROSKELL, C.
Displacement and tilt transducers of 140 dB range. J. Sci.
Instrum. Series 2, 2, 945-949 (1969).




Figure captions:

Figure 1.

Basic schematic of a single mercury manometer,

Figure 2.
Schematic of a double manometer showing interconnections of pressure

chambers and servo bellows.

Figure 3.

Proposed temperature shield consisting of a double, insulated, circulated
water jacket with heater and thermistor feedback. The instrument is
housed inside a final passive thermal shield consisting of a layer of
insulation around a heavy copper casing. The whole assembly operates in

an environment stabilized to within 1 K.

Figure 4.
Stainless steel electrode configuration used to measure small changes in
the height of the mercury column by the technique of capacitance

micrometry.

Figure 5.

General schematic of electronics used for capacitance micrometry.

Figure 6.
Diagramatic view of rippling on the mercury surface. In general the
averaye reciprocal gap measured by the capacitance micrometry is less than

the reciprocal of the average gap.
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Figure 7.
Proposed arrangements of stainless steel boats and constraining springs

intended to overcome the problem of rippling of the mercury surface.

Figure 8.
Detail of spring shape. These are etched from 0.001" stainless steel sheet
and have a very high compliance in a direction perpendicular to the plane

of the spring.

Figure 9.
The effect of a spring on the natural bouyancy of a float. The flotation
level is no longer independent of g and the spring constant must be very

small.
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GRADIO - MAGNOLIA - MASS AND PONER BUDGETS

MASS (KG) POWER (W)
ORY SPACECRAFT. ... . . i i i 7307 410
PLATFORM. . ..., 430 220
. STRUCTURE, SPOILER/CELLS AND THERMAL CONTROL...... 200 20
. POWER SUPPLY, DATA HANDLING, TTC, AOCS............ 150 1ro
TANKS, PROPULSION (BILIQUID).............cc0vunnnns 120 10
. ODORIS LOCALIZATION SYSTEM..........ccoiennennnnnes 20 20
PAYLOAD....... 180 150
. &Rapl0..... Ce et et tiese et iaeteeterasttatsneanns 130 100
B L 50 so0
MARGIN (10 I). 1] 4q
PROPELLANTS. . . it ittt ce e ineiinans 1 000

MAX LAUNCH CAPACITY WITH AR 44 L/SHORT SPELOA DUAL LAUNCH (S5PQT 4) - 1980 KG




GRADIO - MAGNOLIA - PROPELLANTS BUDGET

TOTAL 8V CAPACITY . . it iiiirietieenaasssans 2 500 M/S

(INITIAL MASS OF PROPELLANTS = 1 000 K6)

GRADID ORBIT TRANSFER. ... it it iiearstteneennannens 760 M/S
(830 xm ; 1079,229% — 230 xn ; 06%9/149%9)

DRIFT (6 MOWNTM — WEST)......ccvneecevesanocnonvancnsas 300 M/S

FINAL ORBIT IMSERTIOM. .. ....cceoevvonenccacssocssoncosss 460 M/S
GRADIO ORBIT CONTROL (6 MONTHI ... .. ...\ '''eeeseeenannnn, 1 040 M/S°

{2 TIMES A DAY ; AH ¢ T KM)

"foR M. > B75 XG Dy (G1 > 110
MIN ' 2 '

S (M)

AV AVAILABLE FOR MAGNOLIA MISSIONM. . ... AT 700 N/S

(ORSIT ALTITUOE > 1 000 XM)




NOILVAITI $33¥930 GL - WX 002 : 30NL1IL1V Olavd9

S1300 o10vHd

SNOTLVLS SI¥00 30 IWIHDS NOILVINVIHI




@

J401wypg
762 ydo

- ‘ c i
g .
uoud -
o A

UoIWds WO TLN|INE Jeindue . ue sp

.vﬂm. \3

ola¥un anoynm/vam
S2vuE AL 40 104 w07 2p031000Y




TITLE OF PAPER: GRADIO Project: High Sensitivity Electrostatic Accelerometers
For Spaceborne Gradiometry

SPEAKER: Georges Balmino

QLESTIONS AND COMMENTS:

l. Question: Ho Jung Paik

Could you go over how you get © out of the cross conmponents?
You have 747, but do you know “(?

Response:

We use star trackers and gyros for that.

2. Question: Jean-Paul Richard
Accuracy of star trackers?

Response:

Star trackers accuracy = 0.0l sec of arc/sec
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SENSITIVITIES TO DISPLACEMENTS

In a spherical approximation and local
orbital axes .

-1
GM
[T]L - r3 -1
2
<> bT” _ Ty _ T _ 0
or OA 0
: bTii = bTu - 0
OA (o>
O T,
or r
) , Gravity gradient components are not

sensitive to horizontal displacements




TRANSFORMATION OF COORDINATES :
SPACECRAFT TO LOCAL ORBITAL AXES

<>Uncertainty due to errors d6; , 06, ,08R .

RAK

o o 08, +sin@ 064y
~ 39}:_ O -6 sinB;-060R cosB cosO
L 0

<>Earth pointing ( 61,0 ,65g <<1) .

T;; are not sensitive to 8,
(rotation about the vertical axis)

> Altitude 200 Km !

00, = 1 arc sec e 0T, , =2 2x10-2 E.U.

T
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Fifteenth Gravity Gradiometer Conference
United States Air Force Academy
Colorado Springs, Colorado

CONFERENCE AGENDA

Tuesday, 10 February 1987

1900 - 2200 - Pre-Conference Get-Together at Hilton Inn
Early Registration

Wednesday, 11 February 1987

0700 - Depart Hilton Inn for Fairchild Hall

0730 - Registration — 3rd floor Fairchild Hall, South End
0745 - Welcome/Introduction - Capt Terry J. Fundak
0815 - Presentation by Dr. Georges Balmino of the ONERA (Office National

d'Etudes et de Recherches Aerospatiales).
"GRADIO Project: A SGG Mission Based on Microaccelerometers”

0845 - Presentation by Dr. G. lan Moore of the University of Queensland.
"A Mercury Manometer Gravity Gradiometer”

0906 - Presentation by Mr. Ernest H. Metzger of Bell Aerospace Textron.

"Bell Aerospace Gravity Gradiometer Survey System (GGSS) - Program
Review” '

Presentation by Dr. Frank J. van Kann of the University of Western

0925
: Australia.

"A Prototype Superconducting Gravity Gradiometer for Geophysical
Exploration™

0952

Presentation by Dr. Warren G. Heller of The Analytic Sciences Corp.

"Gravity Gradiometer Survey System (GGSS) Data Processing and Data
Use"”

1016 - Break
1035 - Presentation by Mr. Al Jircitano of Bell Aerospace Textron.

“Self-Gradient Calibration of the GGSS in a C-130 Aircraft”




1058

1120

1130

1150

1200

1245

1330

1354

1357

1417

1434

1510

1530

Presentation by Dr. Sam C. Bose of Applied Sciences Analytics, Inc.

"Gravity Gradiometer Data Processing Using the Karhunen-Loeve
Method"

Presentation by Mr. David M. Gleason of the Air Force Geophysics
Laboratory.

"Numerically Deriving the Kernels of an Integral Predictor Yielding
Surface Gravity Disturbance Components from Airborne Gradient Data”

Presentation by Mr. Al Jircitano of Bell Aerospace Textron.

"Stage II Simulation Results Using the NSWC Synthetic Gravity
Field"

Depart Fairchild Hall for USAFA Noncommissioned Officers’
(NCO) Clud

Lunch - USAFA NCO Club
Depart NCO Club for Fairchild Hall
Presentation by Dr. Richard H. Rapp of Ohio State University.

"Gradient Information in New High Degree Spherical Harmonic
Expansions” :

Presentation by Mr. John J. Graham of the Defense Mapping Agency
Aerospace Center.

"The Effect of Topography on Airborne Gravity Gradiometer Data”
Presentation by Mr. Mike Sideris of the University of Calgary.

"Effect of Terrain Representation, Grid Spacing, and Flight Altitude
on Topographic Corrections for Airborne Gradiometry”

Presentation by Dr. Rene Forsberg of Geodetic Institute (Denmark)
(Currently at the University of Calgary, Canada).

"Topographic Effects in Airborne Gravity Gradiometry”
Presentation by Dr. Alan H. Zorn of Dynamics Research Corporation.

"Observability of Laplace's Equation Using a Torsion-Type
Gravity Gradiometer”

Break
Presentation by Dr. Carl Bowin of Woods Hole Oceanographic Institute.

"Ratios of Gravity Gradient, Gravity, and Geoid for Determination of
Crustal Structure”

@

o




1550 - Presentation by Dr. Rene Forsberg of Geodetic Institute (Denmark).

“"Combining Gravity Gradiometry with Other Exploration
Methods for Geophysical Prospecting”

1600 - Presentation by Dr. Rene Forsberg of Geodetic Institute (Denmark).

“"Computation of the Gravity Vector from Torsion Balance Data in S.
Ohio”

1615 - Presentation by Dr. Hans Baussus von Luetzow of the U.S. Army
Engineer Topographic Laboratories.

"Estimation of Gravity Vector Components from Bell Gravity Gradiometer
and Auxiliary Data under Consideration of Topography and Associated
Analytical Upward Continuation Aspects”

1635 - Depart Fairchild Hall for the Hilton Inn

1700 - Reception - Hilton Inn

Thursday, 12 February 1987

0700 - Depart Hilton Inn for Fairchild Hall
0755 - Presentation by Dr. M. Vol Moody of the University of Maryland.

“"Development of A Three-Axis Superconducting Gravity Gradiometer
and a Six-Axis Superconducting Accelerometer”

0835 - Presentation by Dr. Bahram Mashhoon of the University of Missouri-
Columbia.

“"The Gravitational Magnetic Field of the Earth and the Possibility
of Measuring It Using an Orbiting Gravity Gradiometer”

0905 - Presentation by Dr. Ho Jung Paik of the University of Maryland.

"Tests of General Relativity in Earth Orbit Using a Superconducting
Gravity Gradiometer”

0928 - Presentation by Dr. Dave Sonnabend of Jet Propulsion Laboratory.

“"Magnetic Isolation - Closing the Loop”

0941 - Presentation by Dr. Dan Long of Eastern Washington University.
"Laboratory G(R) Experiment - Progress Report”
1004 - Break




1030 - Cheyenne Mountain Complex Overview
Briefing by Maj Bill Carver, USAF

(Chief, NORAD Presentations Division).

1110 - Form Groups A & B

1115 - Depart Fairchild Hall for USAFA NCO Club

1130 - Lunch - USAFA NCO Club

1200 - Depart USAF Academy for Falcon Air Force Station

1245 - Arrive Falcon AFS for briefing on 2nd Space Wing
Tour of the Consolidated Space Operations Center (CSOC)

(Group A)
1415 - Depart CSOC for Cheyenne Mountain Complex (CMC)
1500 - Arrive CMC

1505 - Security in-processing and process through metal detector

1525 - Travel
1530 - Tour NORAD Command Post
Tour Industrial Area
1620 - Travel/question and answer session
1630 - Depart for Hilton Inn
1715 - Arrive Hilton Inn
(Group B)

1415 - Depart USAF Academy for Peterson Air Force Base (AFB)
1445 - Arrive Peterson AFB museum
1600 - Depart Peterson AFB for Hilton Inn

1630

Arrive Hilton Inn

Friday, 13 February 1987

0800 - Tour of JILA, Boulder, Colorado




Papers included in VOLUME I of the Conference Proceedings

1. *Dr. Georges Balmino, C.N.E.S./Bureau Gravimetrique International, France
Dr. Alain Bernard, ONERA (Office National d'Etudes et de Recherches
Aerospatiales, France)
Dr. Pierre Touboul, ONERA, France

"GRADIO Project: A SGG Mission Based on

Microaccelerometers”

2. *Dr. G. Ian Moore, University of Queensland, Australia
Dr. Frank D. Stacey, University of Queensland, Australia
Dr. Gary J. Tuck, University of Queensland, Australia
Dr. Barry D. Goodwin, University of Queensland, Australia
“A Mercury Manometer Gravity Gradiometer”
3. Mr. Louis L. Pfohl, Bell Aerospace Textron
*Mr. Ernest Metzger, Bell Aerospace Textron
"Bell Aerospace Gravity Gradiometer Survey
System (GGSS) - Program Review”
' 4. *Dr. Frank J. van Kann, et al, University of Western Australia
"A Prototype Superconducting Gravity
Gradiometer for Geophysical Exploration”
5. *Dr. Warren G. Heller, The Analytic Sciences Corporation
“"Gravity Gradiometer Survey System (GGSS)
Data Processing and Data Use”
6. Dr. W. John Hutcheson, Bell Aerospace Textron
(Paper presented by Mr. Al Jircitano of Bell Aerospace Textron)
"Self-Gradient Calibration of the GGSS
in a C-130 Afrcraft”
7. *Dr. Sam C. Bose, Applied Science Analytics, Inc
Mr. Glenan E. Thobe, Applied Science Analytics, Inc
“Gravity Gradiometer Data Processing Using

the Karhunen-~Loeve Method”

' * Denotes Speaker at Confereance




8. *Mr. David M. Gleason, Air Force Geophysics Laboratory

"Numerically Deriving the Kernels of an Integral

Predictor Yielding Surface Gravity Disturbance
Components from Airborne Gradient Data”

9. Dr. W. John Hutcheson, Bell Aerospace Textron
(Paper presented by Mr. Al Jircitano of Bell Aerospace Textron)

“Stage II Simulation Results Using
the NSWC Synthetic Gravity Fleld”

10. *Dr. Richard H. Rapp, Ohio State University

"Gradient Information in New High
Degree Spherical Harmonic Expansions”

* Denotes Speaker at (bnference




Papers included in VOLUME [l of the Conference Proceedings

1. *Mr. John J. Graham, Defense Mapping Agency Aerospace Center
Mr. Joseph L. Toohey, Defense Mapping Agency Aerospace Center

"The Effect of Topography on Airborne

Gravity Gradiometer Data”

2. Dr. Klaus~Peter Schwarz, University of Calgary, (anada
*Mr. M.G. Sideris, University of Calgary, Canada
Dr. I.N. Tziavos, University of (algary, (anada
(Dr. Tziavos on leave from the University of Thessaloniki, Greece)

"Effect of Terrain Representation, Grid Spacing, and
Flight Altitude on Topographic Corrections for
Airborne Gradiometry”

3. *Dr. Rene Forsberg, Geodaetisk Institut, Denmark

“Topographic Effects in Airborne Gravity Gradiometry”

4. *Dr. Alan H. Zorn, Dynamics Research Corporation
"Observability of Laplace's Equation Using
a Torsion-Type Gravity Gradiometer™
5. *Dr. Carl Bowin, Woods Hole Oceanographic Institute
“Ratios of Gravity Gradient, Gravity, and Geoid
for Determination of Crustal Structure”
6. Dr. Anthony A. Vassiliou, University of Calgary, Canada

(Paper presented by Dr. Rene Forsberg, Geodaetisk Institut, Denmark)

" Combining Gravity Gradiometry with other
Exploration Methods for Geophysical Prospecting

7. Dr. D. Arabelos, University of Thessaloniki, Greece
Mr. Christian Tscherniang, Geodaetisk Institut, Denmark
(Paper presented by Dr. Rene Forsberg, Geodaetisk Institut, Denmark)

" Computation of the Gravity Vector from Torsion
Balance Data {n Southern Ohio”

* Denotes Speaker at Conference




8. *Dr. Hans Baussus von Luetzow, US Army Engineer Topographic Laboratory Q
"Estimation of Gravity Vector Components from Bell Gravity
Gradiometer and Auxiliary Data under Consideration of

Topography and Associated Analytical Upward Continuation
Aspects”

9. Dr. H. A. Chan, Unfversity of Maryland
Dr. Q. Kong, University of Maryland
*Dr. M. Vol Moody, University of Maryland
Dr. H. J. Paik, University of Maryland
Mr. J. W. Parke, University of Maryland
"Development of a Three-Axis Superconducting Gravity
Gradiometer and a Six-Axis Superconducting Accelerometer”
10. *Dr. Bahram Mashhoon, University of Missouri-Columbia
"The Gravitational Magnetic Field of the Earth and
the Possibility of Measuring it Using an Orbiting
Gravity Gradiometer”
11. *Dr. Ho Jung Paik, University of Maryland ’
"Tests of General Relativity in Earth Orbit
Using a Superconducting Gravity Gradiometer”
12. *Dr. Dave Sonnabend, Jet Propulsion Laboratory

Mr. A. Miguel San Martian, Jet Propulsion Laboratory

"Magnetic Isolation-Closing the Loop”

13. *Dr. Dan Long, Eastern Washington University

“Laboratory G(R) Experiment - Progress Report"”

* Denotes Speaker at Oonference
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GRADIO PROJECT:
A SGG MISSION BASED ON MICROACCELEROMETERS

by
Dr. Georges Balmino
C.N.E.S./Bureau Gravimetrique International
18 Ave Edouard Berlin
31055 Toulouse Cedex
FRANCE
Dr. Alain Bernard
Dr. Pierre Touboul
Office National d'Etudes et de Recherches Aerospatiales
BP 72

92322 Chatillon Cedex
FRANCE

ABSTRACT

The status of the satellite gravity gradiometry project is reviewed. Since
the first ideas in 1980, technological solutions have ripened and a counfigura-
tina composed of eight cubic electrostatic microaccelerometers is proposed which
should guarantee a signal detection limit of 1072 to 1073 Eotvos. Two basic
systems are proposed to fly the instrument: one is a dedicated satellite on
which a permanent calibrating device, actually part of the gradiometer, would
be implemented; the other would consist of flying the instrument in one of the
NASA projects, the GRM drag-free spacecraft, where it would be suspended in the

double stage DISMS system. A laboratory model of the cubic accelerometers is

also presented.




GRADIO

A SGG MISSION BASED ON MICROACCELERCMETERS

BERNARD A. (ONERA, Chatillon s/Bagneux. France)
TOUBOUL P. (ONERA., id.)
BALMINO G. (CNES. Toulouse, France)

15th GRAVITY GRADIOMETRY CONFERENCE
Feb. 11-13, 1987
(Colorado Sorings - USA)
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ABOUT THE GRAVITY GRADIOMETRY CONFERENCE .....

The First Gravity Gradiometry Conference was held at the Air Force Cambridge
Research Laboratory (AFCRL, now AFGL) in 1973. Its purpose was to provide

a forum to evaluate and compare the efforts of three vendors (Charles Stark
Draper Lab, Hughes Research Lab and Bell Aerospace Textron) in still-emerging
areas of gravity gradiometry. About 15 people attended, most of them from the
companies mentioned above or the Terrestrial Sciences Division at AFCRL. In
contrast, the 1987 Conference had a guest list of 70 plus attendees, with
participation from academia (foreign and domestic), private industry and
government. The papers presented were not restricted to gradiometry alone.
Indeed, the scope of this annual event has broadened considerably since 1973.

With the exception of the first two conferences, all the others have been
held at the US Air Force Academy in Colorado Springs, Colorado. The Geodesy
and Gravity Branch of the Earth Sciences Division of the Air Force Geophysics
Laboratory (AFGL), Hanscom AFB, Massachusetts, has always organized the event,
which usually takes place around the second week in February. This trend is
expected to continue.

If you are not already on our mailing list and would like to attend the
1988 Conference, or if you have any questions, please write to:

Ms Claire McCartney
AFGL/LW
Hanscom AFB, MA 01731

Due to space constraints, we restrict the size of our Conferences to about 75
people. Attendance will generally be on a "first-come, first-served basis™ once
the completed registration forms are returned to us. We shall mail these forms
later this year.

While we have a limited number of copies of the proceedings for non-attendees

of the 1987 Conference, copies of proceedings for prior years are not available.
Also, we appreciate any comments or suggestions you may have regarding this
document.




ABOUT THESE PROCEEDINGS........

Due to the large number of papers presented at the Conference, I have
divided the proceedings into two manageable volumes. At the beginning of
each volume is a list of all Bzﬁérs contained in both volumes, in actual
order of presentation at the Conference. This is also the sequence of the
published papers within these proceedings.

For the sake of completeness, both volumes contain the Attendees List,
Conference Agenda, Lists of Papers, Conference History, Acknowledgments
and this explanation.

Every paper is preceded by an abstract in a standard format. Some papers
may also have the original abstract included. Further, you may recall the
Q&A session we had at the end of each presentation. In cases where a
technical interchange did take place, the questions and answers are
documented at the end of each pertinent paper. Every paper did not have

a Q&A session, and I have included all Q&A sheets that were handed to me
at the end of each presentation. Except for a few minor editorial changes,
the information on these sheets has not been significantly altered.

Obviously, these sheets are as "good” as the inputs you provided.

In summary, I hope the above explanation was helpful. I have done what I
consider to be a thorough job of collecting and checking all the
information for these proceedings. Errors will occur, however, and while
I will entertain any comments and criticisms on this issue, these
proceedings will stand as published.

Thank you for your participation, and your patience!

Capt Vishnu V. Nevrekar November 1987
Earth Sciences Division

USAF Geophysics Laboratory

Hanscom AFB, MA 01731
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We couldn't possibly organize a conference the scope and size of our forum
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Conference.
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GGI #1 OUTPUT OURING LABORATORY CALIBRATION WITH OUTPUT

PREDICTED BY MASS MODEL TAYLOR SERIES
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GGI #2 OUTPUT DURING LABORATORY CALIBRATION WITH OUTPUT
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GGI #3 OUTPUT DURING LABORATORY CALIBRATION WITH OUTPUT
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GGI #1 OUTPUT DURING AIRCRAFT CALIBRATION WITH OUTPUT
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SELF GRADIENT CALIBRATION CURVES GGI #3 FOR VARYING ROLL
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TITLE OF PAPER: Gravity Gradiometer Survey System (GGSS) Data Processing

and Data Use

SPEAKER: Warren G. Heller

QUESTIONS AND COMMENTS:

1.

Question: Unknown

How big is the test area you used?
Response:

300 km on a side, modelled over 40 km.

Question: Rene Forsberg

In fitting your improved AWN covariance model, did you use local gravity
data (wavelengths shorter than 10 km) to compare “topographic” and
"non-topographic™ local gravity power?

Resgonse:

No, these data were not available. However, the slope of the refined model
seems to fit well with the slope inferred by the original AWN model.

Question: Richard Rapp

What is the accuracy of the recovery of the terrain signal in the block
sizes you considered to be the resolution of the system?

Response:
The aim is to recover the terrain effects to 0.1 mgal.
Question: Chris Jekeli

Did you use isostatic compensation model for computing terrain effects on
deflection of vertical?

Resgonse:

No, just used the terrain data.
Question: John Brozena

Did the error model for the gradiometer used in your analysis include
environmental noise sources?

Resgonse:

Yes.




Question: James E. Fix .

In analyzing the terrain effect, was a variable density or a constant density
used?

Resgonse:

A constant density was used. Density was taken as 2.67 g/cmS.

Qgestion: Sam Bose

How does the performance deteriorate as the averaging size is increased?

Response:

There is no performance degradation provided the averaging size takes into
account the maximum bandlimit of the gradiometer signal.




SELF GRADIENT CALIBRATION OF THE GGSS
IN A C-130 AIRQRAFT

by
Dr. W. John Hutcheson
Bell Aerospace Textron
P.0. Box One
Buffalo, NY 14240
ABSTRACT
Due to the inverse cube law for gravity gradients, mass structures close
to the gradiometer sensing elements produce significant outputs termed self
gradients which have to be compensated for in the GGSS Stage I data reduction.
In the Bell approach to the self gradient calibration, a mass model representing
the mass structures, consisting of the GGSS platform gimbals, servo motors,
biannacle and aircraft, is identified using optimal identi{fication techniques
and then used to generate the compensation.
This paper contains a brief description of the theory underlying the Bell
approach to the self gradient calibration, details of the self gradient calibra-
tion of the GGSS, covariance results, GGSS calibration data and the calibration

curves representing the combined field of the GGSS, the van and the C-130

aircraft.
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. to temperature fluctuations. Improvements to the cryostat have increased the thermal isolation
and stability and are expected to reduce noise from this source.
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Figure 5 Gradient signal as a function of distance. The observed gradient signal is plotied
against the distance between the centres of mass of the gradiometer and the rim of the
gradient generator. The solid curve is calculated from its known mass distribution
and varies approximately as the inverse cube of the spacing.

Conclusion *
The prototype gradiometer has demonstrated that useful gradient sensitivity is attainable and
that intrinsic detector noise is unlikely to be a limitation on the development of a practical
instrument. However, improvements in multi-axis common mode rejection and rotational
stabilization are required. These will be difficult to achieve, but do appear to be practicable.

References

1. S. Hammer and R. Anzoleaga, "Exploring for Stratigraphic Traps with Gravity Gradients”,
. Geophysics 40, p.256, (1975).

2. S.K. Jordan, "Moving-Base Gravity Gradiometer Surveys and Interpretation”, Geophysics
43, p.94, 1978.

. See also in "Spaceborne Gravity Gradiometry Workshop®, Goddard Space Flight Centre.
Greenbelt, Md, (Feb - Mar 1983).




3. E.R. Mapoles, PhD Thesis, Stanford University, (1981).

4. H.J. Paik, "Superconducting Tunable-Diaphragm Transducer for Sensitive Acceleration
Measurements”, J. Appl. Phys. 47, p1168, (1976).

5. M.V. Moody, H.A. Chan, and H.J. Paik, "Preliminary Tests of a Newly Developed
Superconducting Gravity Gradiometer®, IEEE Transactions in Magnetics, MAG-19, 461,
(1983).

"Research supported by the Australian National Energy Research, Development and
Demonstration Program and by B P Australia.




TITLE OF PAPER: A Prototype Superconducting Gravity Gradiometer

for Geophysical Exploration

SPEAKER: Frank J. van Kann

QUESTIONS AND COMMENTS:

1. Question: Jean~-Paul Richard

What are the mechanical Q, the resonant frequency of test
masses and the electrical Q?

Response:

Q = 105

mechanical

Frequency of test masses = 30 Hz
Qelectrical = not determined

2. Question: Ho Jung Paik

a) What kind of suspension did you use for the gradiometer?

b) Why is it that your noise spectrum does not show resonance peaks of the
suspension nodes?

Response:

a) It was soft-suspended. And there was some nasty resonance.
b) We used notch filters to remove those peaks.

3. Question: Anthony R. Barringer

What type of rotational stability do you require in the platform for
mounting the gradiometer?

Resgonse:

10~ radians per second. It is desirable to have the platform inside the
cryostat.




GRAVITY GRADIOMETER SURVEY SYSTEM (GGSS)
DATA PROCESSING AND DATA USE

by
Dr. Warren G. Heller
The Analytic Sciences Corp.
100 Walkers Brook Drive
Reading, MA 01867
ABSTRACT
Since the GGSS will be flown at a given altitude, h, (approx. 600m) above

the surface, a short wavelength limit is effectively imposed on the information
content of the acquired data. This limit is dictated by the noise of the

=2mh/)

gradiometer instruments and the upward continuation factor, e , Where A is

the gravity disturbance wavelength. Since the information is band limited, it

is appropriate to consider representing the downward continued gravity disturb-

ance estimates as area means over a suitably-sized block that retains full data
resolution and is easy to incorporate into existing gravity data bases. For a
given survey area, the averaging block size increases with flight altitude.

This paper 1) describes an analytic technique for determining the shortest wave-
length at which information is reliably gathered by an airborne gradiometer, 2)
presents the results of applying this technique in the GGSS test area, and 3)
discusses the implications of survey altitude on resolution of gravity disturb-
ance recovery by gradiometric surveys in other areas. Video displays are
presented which illustrate character of the short wavelength gravity field in

the test area.
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THE ANALYTIC SCIENCES CORPORATION

FOREWORD

This document contains material used in a
presentation given by The Analytic Sciences Corpo-
ration. The material is not intended to be self-
explanatory, but rather should be considered in the
context of the overall presentation.




THE ANALYTIC SCIENCES CORPORATION

ABSTRACT

Gravity Gradiometer Survey System (GGSS)
Data Processing and Data Use

Since the GGSS will be flown at a given altitude, h,
(approx. 600 m) above the surface, a short wavelength limit is
effectively imposed on the information content of the acquired
data. This limit is dictated by the noise of the gradiometer

instruments and the upward continuation factor, e-Ah, where

A 1s gravity disturbance wavelength. Since the information is
band limited, it is appropriate to consider representing the
downward continued gravity disturbance estimates as area means
over a suitably-sized block that retains full data resolution and
is easy to incorporate into existing gravity data bases. For a
given survey area, the averaging block size increases with flight
altitude. This paper 1) describes an analytic technique for
determining the shortest wavelength at which information is reliably
gathered by an airborne gradiometer, 2) presents the results

of applying this technique in the GGSS test area, and 3) discusses
the implications of survey altitude on resolution of gravity
disturbance recovery by gradiometric surveys in other areas.

Video displays are presented which illustrate the character of

the short wavelength gravity field in the test area.
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TITLE OF PAPER: Bell Aerospace Gravity Gradiometer Survey System (GGSS) -
Program Review

SPEAKER: Ernest H. Metzger

QUESTIONS AND COMIENTS:

1. Question: David Gleason

Does the van have a cruise control system?

Response:

Yes, but the cruise control system will be of assistance only if the van's
velocity » 20 mph.

2. Question: Anthony R. Barringer

How many satellites did you use for GPS positioning?
Was a ground reference station used?

Response:

Four satellites as a minimum essential. No ground receiver used.

3. Question: Jim Lowery

What was used as an altitude reference on the results shown crossing the
gorge?

Resgonse:

GPS aided by barometric altimeter was used as the altitude
reference with an accuracy of 7 meters rms to 20 meters rms.

4. Question: Ted Sims

What fraction of a "g" can you reasonably expect the system to
experience while in a turn?

Response: .5 g is reasonable.




A PROTOTYPE SUPERCONDUCTING GRAVITY GRADIOMETER
FOR GEOPHYSICAL EXPLORATION

by
Dr. Frank J. van Kann, et al
University of Western Australia

Department of Physics
Nedlands, Western Australia 6009

ABSTRACT

A three axis gradiometer, designed to measure the diagonal components of
the earth's gravitational gradient tensor, has been built and is being tested
in the laboratory. It consists of three pairs of accelerometers. The acceler-
ometers of each pair are mounted with their sensitive axes co-linear and
orthogonal to the other pairs. The difference in acceleration for a pair is
proportional to the appropriate component of the gradient tensor and is sensed

via a displacement which modulates the inductance of a superconducting coil

coupled by means of a transformer to an RF biased SQUID with energy sensitivity

3 x 10-29 J/Hz.

Rejection of in-line common mode acceleration is achieved by tuning the
natural resonant frequencies of the accelerometers by adjustment of persistent
currents stored in the superconducting force coils. A common mode rejection ratio
near 100 dB has been achieved in the presence of common mode accelerations
approaching 1072 ms~2. This has enabled the detection of a laboratory generated
signal as small as 5 E8 at signal frequencies below 1 Hz with signal to
noise ratio approaching 10. Above 0.1 Hz, the noise floor of the instrument is
about 0.5 E8 / ¥ Hz under quiet conditions. Below 0.1 Hz it has been limited

by thermal drifts but measurements are at present being carried out in a new

cryostat with improved temperature stability.




A PROTOTYPE SUPERCONDUCTING GRAVITY GRADIOMETER

FOR GEOPHYSICAL EXPLORATION’

F J van Kann, M J Buckingham, M H Dransfield, C Edwards, A G Mann, R D Penny and P J Turner
Physics Department, The University of Western Australia, Nedlands, 6009, Australia.

Abstract

A three axis gradiometer, designed to measure the diagonal components of the earth's
gravitational gradient tensor, has been built and is being tested in the laboratory. It consists of
three pairs of accelerometers. The accelerometers of each pair are mounted with their sensitive
axes co-linear and orthogonal to the other pairs. The difference in acceleration for a pair is
proportional to the appropriate component of the gradient tensor and is sensed via a
displacement which modulations the inductance of a superconductin% coil coupled by means of a
transformer to an RF biased SQUID with energy sensitivity 3 x 10729 J/Hz.

Rejection of in-line common mode acceleration is achieved by tuning the natural resonant
frequencies of the accelerometers by adjustment of persistent currents stored in
superconducting force coils. A common mode rejection ratio near 100 dB has been achieved in
the presence of common mode accelerations approaching 10°2 ms™2. This has enabled the
detection of a laboratory generated signal as small as 5 E§ at signal frequencies below 1 Hz with
signal to noise ratio approaching 10. Above 0.1 Hz, the noise floor of the instrument is about
0.5 E&/NHz under quiet conditions. Below 0.1 Hz it has been limited by thermal drifts but
measurements are at present being carried out in a new cryostat with improved temperature
stability.

Introduction

The form of the earth’'s gravitational potential function contains a wealth of information of
importance in geophysics. For the purposes of geophysical exploration, this has traditionally
been exploited through measurement of the first spatial derivatives of the potential — the
gravity field. Because of the difficulty of distinguishing spatial variations in gravity from
temporal fluctuations of the acceleration of a moving vehicle, these measurements of gravity can
be made to sufticient precision only with stationary, earth based instruments. The limitations
imposed by translational acceleration can in principle be avoided by measurement of the second
derivative of the potential - gravity gradients. Indeed, the discrimination of interestin?
geological anomalies could be more easily achieved by direct measurements of the gradient
rather than gravity itself and under appropriate conditions gradient measurements are less
dependent on elaborate corrections for topographical features?.

To obtain gravity gradient data useful for exploration, a noise level less than 0.1 ES/VHz is
required, which implies an equivalent acceleration resolution on the order of 10" ms2in an
instrument of reasonable size and mass. The extremely large common mode rejection ratio
(possibly exceeding 200 dB) required to make these measurements in a moving vehicle may be
attainable, given a system with adequate linearity and a sufficiently precise and stabie method of
tuning. However, the finite elastic stiffness of materials gives rise to errors in the gradient




signal which are quadratic in the common mode acceleration. The size of these errors depends on
the geometrical shape and the elastic stiffness of the instrument, but for materials with a
velocity of sound around 3 km/s and reasonable shape the maximum allowable common mode
acceleration is less than 102 ms'2 for a 0.1 E& error. This sets an exacling requirement for
the translational acceleration isolation of the stabilisation system required for any vehicle
suitable for use as an exploration platform.

Rotational stabilisation is also required to reduce errors which, for the diagonal components of
the gradient tensor, are quadratic in the angular velocity of the instrument. For these errors to
be less than 0.1 ES requires the angular rate to be less than 10°° radian s-! about any axis.
Rotation sensors with adequate performance to meet this requirement are currently availabie.
However, these will need to be adapted for low temperature operation, since the innate
mechanical elastic compliance of the cryostat imposed by thermal design considerations will
require that some rotational stabilisation be implemented inside the cryogenic environment.

JIhe laboratory prototype

The three axis prototype gradiometer uses principles similar to those described by Mapoles3.
Paik4 and Moody et al°. It consists of six essentially identical accelerometers grouped to form
three pairs, one for each tensor component to be sensed. The two end faces of each accelerometer
can be identified by a letter A, B, C or D so that the two accelerometers for a given pair can be
labelled AB and CD respectively. These are selected for matched mechanical resonant frequencies
and are mounted with their sensitive axes co-linear and orthogonal to those of the remaining
pairs. Each accelerometer consists of a solid niobium cylinder, some 30 mm in diameter, 30
mm in length, and about 300 gm in weight suspended at each end by a thin folded cantilever
niobium leaf spring in a niobium housing.

The remote end faces A and D of the pair are parallel and in close proximity to annular, single
layer, spiral "pancake” niobium wire coils attached to the ends of the housing. Each of these
pancake coils actually consists of a pair of concentric coils; the smaller inner one being used for
RF position sensing and the larger outer one forming the force coils for CMRR tuning and
feedback. The resonant frequency of the accelerometers is about 25 Hz and can be increased by
several percent by means of a persistent current stored in the appropriate force coil. The end
face labelled C of accelerometer CD is similarly with another pancake coil mounted on the B end
face of the paired accelerometer AB. This coil is coupled to the SQUID by means of a
superconducling matching transformer and is used to directly sense the differential motion
between the accelerometers.

c I lerati ,

Accelerations are monitored by sense coils at the ends of the gradiometer housing. Each sense
coil is incorporated into the tank circuit of a radio frequency oscillator, whose frequency is
modulated by motion of the test mass relative to the housing. This position readout permits
preliminary testing of the accelerometers at room temperature and aiso enables calibration of
the primary superconducting differential motion sensing system when cold.

The RF oscillators have been optimised for low power operation, both to permit their use in the
highly thermally isolated cryogenic environment and also to minimise SQUID interference. At
liquid helium temperature, these provide a stable and sensitive position sensor with 109 m




resolution while dissipating only 40 uW.

The spring constant of the mechanical springs is augmented as required by means of the magnetic
force from a persistent current stored in the force coils. This allows the accelerometers to be
precisely matched to achieve high rejection of accelerations along the gradient sensing axis.

The effectiveness of the adjustment of persistent current for CMRR tuning is illustrated in
figure 1. Here the natural resonant frequency of the CD accelerometer was about 0.8 Hz below
that of AB. The upper two curves in figure 1 show the Fourier spectrum of the response of the
two accelerometers from white noise excitation. The peak near 26.5 Hz corrresponds to the
natural untuned low frequency normal mode for the coupled oscillators. (The other, high
frequency normal mode is above 28 Hz and not visible in this diagram.) The family of curves in
the central region of figure 1 shows the spectrum of the transfer function amplitude i.e. the
magnitude of the complex ratio of the response of the two accelerometers, for several persistent

currents stored in force coils C and D. The lower curves show the corresponding phase of the
transfer function.
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The curves 1 to 5 show the resonant frequency of the CD accelerometer, corresponding to the
peak in the transfer function amplitude, being increased to match that of AB, corresponding 10
the dip in amplitude. The accelerometers are matched when these coincide as in curve number 4.
In curves 1 10 3, the stored current is too small and the frequency of CD is lower than that of AB.
In curve 5, the current is oo large and the frequency difference is reversed. In curve 4, the
accelerometers are as closely matched as can be determined by this method. More precise tuning
is achieved by direct measurement of the differential motion using the SQUID.

Diff ial mod lecati .

Differential motion between the two accelerometers is measured to extremely high resolution by
means of an RF biased SQUID magnetometer, model 330X, manufactured by Biomagnetic
Technology Inc. This detects changes in the persistent current trapped in the superconducting
differential motion sense coil. Extreme care has been taken in shielding this input circuitry
from fluctuations in the ambient magnetic field and also from RF interference which can cause
the SQUID to cease functioning.
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Figure 2 Gradiometer response to applied calibration and common mode rejection test signals.
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The differential motion sensitivity is calibrated with respect to the known sensitivity of the RF




position sensor as shown in figure 2. The Fourier components of both the common mode motion.
sensed by the RF detector and differential mode motion, sensed by the SQUID are shown as a
function of frequency. The vertical scale on the left is labelled with the calibrated displacement
scale, while the scale on the right shows the equivalent acceleration amplitude relative to the
earth's gravitational acceleration. For the calibration, the CD accelerometer is forced into
oscillation at a known amplitude and frequency by means of one of its force coils, which has a
trapped persistent current. Although the heat switch which is in parallel with the force colil
remains cold, the stray series inductance allows the persistent current to be modulated via the
external current leads. Since the forced oscillation is well below the resonant frequency. the
resulting motion of the AB accelerometer is small and not detectable above the noise. The CMRR
is measured simultaneously by means of a forced common mode oscillation of the entire
gradiometer assembly, which itself is suspended inside the dewar on soft coil springs with a
resonant frequency of about 1 Hz. The dependance of the CMRR on the trapped current is shown
in figure 3. The circles and crosses represent data from two different runs, with '02 = 100 A?

and 20 A2 respectively. For clarity, some of the data from the latter are omitted and plotied on
an expanded scale in the inset. The maximum CMRR achieved is nearly 100 dB.
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Figure 3 Common mode rejection ratio as a function of the square of the push coil current.

Gravi jent detect

A gravitational gradient generator was constructed to test the performance of the gradiometer
with actual time varying gradients. The generator consists of a 1.2 meter diameter wheel at the
periphery of which are attached four lead masses weighing some 65 kg each. The gradient
produced by such a mass when placed close (0.3 m) to the gradiometer is some 120 Ed. When
the disc is set into rotation by a variable speed drive, it produces an AC gradient with




fundamental Fourier component at four times the rotation frequency, and rms amplitude of about
30 ES.

The ability of the gradiometer to successfully detect the gravitational gradient of the generator is
shown clearly in figure 4. The frequency for the measurement was chosen such that the
fundamental rotor frequency (0.077 Hz) and its first few harmonics did not coincide with any
natural resonances of the gradiometer suspension or dewar system. The gradient signal at
0.3 Hz has the expected amplitude of approximately 4 E6 rms. This fundamental Fourier
component of the gradient produced by the rotor can be quantitatively predicted from its known
mass distribution, and serves as a useful check on the gradiometer calibration. The strong
signal at 0.53 Hz results from the rocking motion of the gradiometer on its suspension springs
and cannot be suppressed by common mode rejection.

100

7; | |
|
| ,\M,«M a i

0 05 1
Frequency, Hz

———

o
1

RMS Gradient, E6

~-
1

Eirure 4 Detection of a gradient signal. This figure shows on a logarithmic scale the Fourier
spectrum of the differential motion SQUID signal in response to the four mass
gradient generator rotating at 0.077 Hz. The SQUID sensitivity is 2 V/uA and the
unfiltered output is used for feedback damping to reduce the accelerometer Q. The
signal is processed by an HP 3582A spectrum analyser without any additional
filtering. -

The distance dependence of the gravity gradient produced by the generator (approximately 167
at short distances) is easily calculated and the results are in good agreement with the observed
behaviour, as shown in figure 5.

At very low frequency, the gradiometer noise level rises significantly because of the sensitivity

.
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Spring etched from 0.001" sheet

Fig. 8




Normal flotation level &

' Additional force
o l due to spring

=

Flotation level with spring &'

 Required spring constant < 0.14 Nm'

Fig. 9




TITLE OF PAPER: A Mercury Manonmeter Gravity Gradiometer
. SPEAKER: G. Ian Moore

QUESTIONS AND COMMENTS:

1. Question: Jean-Paul Richard

Sensitivity of capacitance detection?
Response:

1077 times the gap = 2 X 1073 mm.




BELL AEROSPACE GRAVITY GRADIOMETER SURVEY SYSTEM (GGSS)
PROGRAM REVIEW

by

Mr. Frnest H. Metzger
Mr. Louis L. Pfohl

Bell Aerospace Textron
P.0. Box One
Buffalo, NY 14240
ABSTRACT
A review of GGSS program activities in 1986 includes system lab testing,

land vehicle and aircraft installations, electrical power and signal interfacing,
and shakedown cruises. Among the significant accomplishments were system output
noise determination in the laboratcry, platform and aircraft self-gradient

calibrations, and implementation of automated flight pattern control via GGSS

navigator and computer linked to the C-130 autopilot.
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TTTLE OF PAPER: Gravity Gradiometer Data Processing Using

the Karhunen-Loneve Method

SPEAKER: Sam C. Bose

OUESTIONS AND COMMENTS:

1.

Question: Ted Sims

Will the method presented accomodate data taken at differing altitudes?

Response:

Yes.

Question: Hans Baussus von Luetzow

How do you coasider gravity gradiometer red noise?

Response:

Red noise and white noise effects are integrated in one error variance.
Ouestion. Anthony R. Barringer

I am not clear on your survey pattern of flying. Do you have a viewgraph?

Response:

No. My analysis is based on an orthogonal grid.




NUMERICALLY DERIVING THE KERNELS OF AN INTEGRAL PREDICTCR
YIELDING SURFACE GRAVITY DISTURBANCE QOMPONENTS
FROM AIRBORNE GRADIENT DATA

by
bavid M. Gleason
Geodesy and Gravity Branch
Earth Scieaces Division
Air Porce Geophysics Laboratory
Hanscom AFB, MA 01731-5000
ABSTRACT
C. Jekeli (1986) developed an integral estimator which, when used in
conjunction with a set of airborne gradient observations, yields gravity distur-
bance component differences between a desired collection of actual disturbance
component values on the ground and a corresponding collection of least-squares
collocation predicted values that are based on a small, given set of disturbance
component tie point values, also on the ground, which provide needed long-wave-
length gravity information. (Thus the desired actual values can be estimated
by adding back the differences to the tie point-implied values). This paper
shows how all 18 possible kernels of the integral estimator can be easily and
accurately approximated via two dimensional discrete inverse Fourier transforms.
Armed with such a set of kernel values, a few tie points and a set of airborne
gradient values implied by a mass layer gravity model for northern Texas, the
RMS error of a set of predicted ground disturbance components, referenced to
“rrue” values implied by the same model, is less than 1 mgal. A flat earth

approximation is employed in this exercise using (X, Y, Z) (east, north, and

down) coordinates.




NUMERICALLY DERIYING THE KERNELS OF AN
INTEGRAL PREDICTOR YIELDING SURFACE GRAYITY
DISTURBANCE COMPONENTS FROM  AIRBORNE

GRADIENT DATA.




o FOR A DETAILED EXPLANATION OF THE NSWC MASS LAYER LOCAL
GRAVITY MODEL FOR NORTHERN TEXAS, SEE WHITE (1984) e
-~ (TASC/AFGL-TR-85-0037),

IF U CONTAINS A FEW GIVEN TIE POINT DISTURBANCE COMPONENT
YALUES ON THE GROUND, LE.,

y = I (J=XYORZ)
®
wE CAN ALWAYS PREDICT A VECTOR W OF OTHER GROUND
DISTURBANCE COMPONENTS YIA THE LSC EQUATION
W = (P]U (1)
(Np BY 1)
WHERE THE Np BY Ny ESTIMATOR MATRIX
(P] = [Cyyl - [lCy,l+(D11"! (2)

(NoBYNp)  (NyBYNp)




1. ESTIMATING THE (ACTUAL-LSC) DISTURBANCE COMPONENT
DIFFERENCES:

C. JEKELI(1986) SHOWS IF

(1) THE YECTOR Y CONTAINS A SET OF FAIRLY DENSE AND
INFINITELY EXTENDED AIRBORNE GRADIENTS AT SOME CONSTANT
ALTITUDE H ABOYE THE PLANE EARTH (THE OBSERYATIONS MAY
OR MAY NOT BE REGULARLY GRIDDED)

(2) THE VECTOR U CONTAINS A FEW TIE POINT DISTURBANCE
COMPONENT VALUES ON THE GROUND AT POINTS (X, Yy 00 K=1Ng

(3) WE ASSUME THE GRAVYITY SIGNAL TO BE STATIONARY AND THE
COYARIANCES TO BE FUNCTIONS ONLY OF THE DISTANCE BETWEEN

A PAIR OF POINTS (P ,P, )

THEN THE DIFFERENCES BETWEEN THE ACTUAL DISTURBANCE .

COMPONENT VALUES ON THE GROUND AND THE CORRESPONDING
YALUES IMPLIED BY THE LSC PREDICTOR OF SECTION |, AT THE

PREDICTION POINT (XY, 0), CAN BE EXPRESSED AS




00 00
\!_(XO,YO,O) = I I[B(XO—X,YO—Y,O)]'!(X,Y,H)dXdY

—00 ~00

(3)

WHERE EACH INDIVIDUAL KERNEL ELEMENT IN THE MATRIX [ B ]
CAN BE EXPRESSED AS A SIMPLE LINEAR COMBINATION OF THE
CONTINUOUS TWO-DIMENSIONAL INVERSE FOURIER TRANSFORMS
OF THE SPECTRUMS

-1
(B {0y 04)] = [Byy (@0y)]- [Byy (0. )]
( 4)
AND
-1
[BZ(QX'QY)] = [(DQX(@X’QY)][(D_V_!(&X'QY)]

(5)

WHERE [y ), (] AND (D]

CONTAIN THE (CROSS)-PSD

FUNCTIONS BETWEEN THE W PREDICTED, Y OBSERVED AND U TIE
POINT QUANTITIES. |




NOTES:
(1) EQUATION (3), YIZ,,

o0 o0

H(Xy.¥y.0) =j J[B(XO—X,YO—Y,O)]-X(X,Y,H)dXdY

—00 —00

_(3)

IS OUR INTEGRAL PREDICTOR. EACH INDIYIDUAL KERNEL ELEMENT
IN [ B ] CAN BE THOUGHT OF AS A "WEIGHT" SINCE IT IS A
FUNCTION ONLY OF THE DISTANCE BETWEEN THE PREDICTION

POINT (X5,Y5,0) AND THE YARYING OBSERYATIION POINTS
(X,Y,H=C). HENCE, ELEMENTS IN [ B ] ARE CIRCULARLY SYMMETRIC

WRT THE ORIGIN AND MONOTONICALLY DECREASE IN MAGNITUDE
AS YOU MOYE AWAY FROM THE ORIGIN.

(2) EQUATION ( 3 ) WILL BE NUMERICALLY EYALUATED, BASED ON
THE FINITE LENGTH AND DISCRETE DATA SPACING OF THE

OBSERYATIONAL GRADIENT SURYEY AREA.

(3) THE (CROSS)-PSD MATRICES IN EQUATIONS (4)-(5), YIZ,,




-1
[B, (04 -0y)] =[Oy (04,0)] [Dyy (@ 0y)]
4y @

AND

-1

(B (0 0y)] = [Pyy (0 0y)1- [Oyy(0y,00))

(5)
WILL BE EXPRESSED IN TERMS OF

1) THE FREQUENCY DOMAIN TRANSFER FUNCTIONS WHICH LINK
THE DISTURBING POTENTIAL ON THE GROUND, Tiy, TO THE GROUND .

COMPONENTS IN W AND U AND TO THE AIRBORNE GRADIENTS INY,

2) THE PSD FUNCTION OF T, q)TO TO(OJX,(.OY), WHICH WE'LL

ASSUME TO BE ISOTROPIC, LE, ¢T0,T0 = ¢T0’T0(0.)), AND IS

BASED ON THE DEFINING PARAMETERS OF THE LOCAL GRAVITY
MODEL USED AND

3) THE PSD OF THE WHITE NOISE iN THE GRADIENT OBSERYATIONS
GIVEN BY

B = [482/(9/25kM2)] = t11x107 s 4 cymn2




THE NINE TRANSFER FUNCTIONS THAT ARE APPLICABLE TO THIS
STUDY ARE:

QUANTITY (AT HEIGHT h): F.D. TRANSFER FUNCTION LINKING
THE QUANTITY TQ Ty

| o o-@h
Tx l(oxe
T iy oW
i e
Y Y
TZ -(.oe-“)h
Txx 270N
- -wh
TXY ‘(Oxmye
- -Wh
TXZ l(l)o)xe
TYY - 2e-0)h
Y
Tyz | -io)(oye""h
Tzz (028-0')h

_ 2 241/2
WHERE @ = (wx +(oY ) .




SUPPOSE WE WANTED TO PREDICT W(Xq,Yg) = (Ty,Ty,T7) AT EACH

OF THE GGSS GROUND GRID POINTS, USING ALL 6 GRADIENT
OBSERYATIONS AT EACH OF THE AIRBORNE GRID POINTS, LE,

BE THE 3 BY 6 MATRIX HAYING THE STRUCTURE

(X,XX) (X,XY) (X,XZ)  (X,YY) (X,YZ) (X,22)
—icox3N -icox2wYN -oxox2N -inwYQN W N iwzme
D D D D D D
(Y XX) (Y, XY) (Y X2Z) {vyy) (v,yz2) (Y22)
iy 2 - 2 e 3 2N inl
uox coYN ncome N —vxoxwYN “"Y N 'OJO)Y N ® wYN

D D D D 0] 0
(Z XX) (Z XY) (ZXZ) YY) - (Zy2) (222)

2 2 2 2 3
Oy N wxwYN i me Wy N -io coYN -®°N

D D D D D D

L .
- o~Wh
WHERE N=¢e QTO,TO(Q) (6)
_ -2wh 4

AND D=1} +e 20N P14 10(0) (B0 -0 (D) ¢




(X,XX) (X XY) (X,XZ) (X,YY) (X,YZ) (X,22)

ey SN iy 2 2N i 28 - .2
lwx N w)x O)YN -(oo)x N w)xwYN (om)goYN (4] XN

D D D D D D
(Y, XX) (Y,XY) (Y,XZ) (yvyy) (yyz2) (Y,22)
ity 2 - 2y iy 3 y NUETY
w)x _‘°YN ncome N mo)XwYN qu N -oxoY N @ wYN

0 D D D D - D
(Z XX) (Z,XY) (ZX2) (Z2,YY) (2YZ) (2,22)

2 2 2 2 3
o)o)x N oxoxcoYN 10 me wwy N 10 o)YN -0°N

D D D D D 0

= o~WN
WHERE N=¢ q)TO,TO(w) (6)

CAND D=qre o (@) Bot-a,20,2. (@

NOTES:
(1) ONLY 7 OF THE 18 SPECTRUMS HAYE TO BE SUBJECTED TO A 2D
IFT PROCESS (THE REST ARE DIRECTLY ATTAINABLE FROM THE 7).

(2) DUE TO THE MAKE-UP OF THE DENOMINATOR ; D, NONE OF THE 18
SPECTRUMS ARE ISOTROPIC WHICH MEANS THE 2D IFT PROCESS CAN
NOT BE SIMPLIFIED INTO A 1D HANKEL PROCESS.

(3) THE STRUCTURE OF THE SPECTRAL MATRIX [B (e, 0,)] WILL
BE A SUBSET OF THE ABOVE [B,].




C JEKELI (1986) SHOWS THAT IF
Y = (Ty7,Ty7.T77) AT EACH AIRBORNE SURVEY POINT AND e

¥ = T7 AT EACH GROUND SURYEY POINT

THEN EACH ELEMENT IN THE RESULTING 1 BY 3 SPECTRAL MATRIX

[B,] WILL HAVE THE ISOTROPIC DENOMINATOR OF -

D=1 +20% 2% (@) (8)

10,70
AND THE 2D IFT PROCESS ON [B,] AND [B5) CAN BE SIMPLIFIED

TO A 1D HANKEL PROCESS IN TERMS OF THE Jy AND J; BESSEL ’

FUNCTIONS OF THE FIRST KIND._
SIMILARLY, IF ¥ = (Tyz,Tyz,T7z) AND W = (Ty,Ty,T7) THEN THE

2D IFT PROCESS ON THE RESULTING 3 BY 3 [B;] AND [B,]

MATRICES CAN BE SIMPLIFIED TO A 1D HANKEL PROCESS IN TERMS
F THE Jo, J; AND J, BESSEL FUNCTIONS

;

(1) THE ALGEBRAIC MANIPULATIONS YIELDING THE 1D INVERSE
HANKEL TRANSFORMS ARE YERY METICULOUS.

(2) CHRIS NUMERICALLY EVALUATED THE INYERSE HANKEL

PROCESS YIA SERIES EXPANSIONS GIVING A POSSIBLE 0=10%.
—




TO OBTAIN N EQUALLY SPACED B(X,Y) YALUES ALONG EACH

HORIZONTAL PROFILE (AX = INCREMENT) AND M EQUALLY SPACED
B(X,Y) YALUES ALONG EACH YERTICAL PROFILE (AY = INCREMENT)

WE CAN RELATE THE 1t ANGULAR FREQUENCIES TO THE INTEGER
FREQUENCY COUNTERS 1y AND ly VIA

2n- 1X
W, = RADIANS/METER AND
X~ NAX
2n- lY
W, = RADIANS/METER
Y1 MAY

(15)
AND THEN THE DISCRETE INVERSE FOURIER TRANSFORM CAN BE
APPROXIMATED BY

M N
B(nAX ,mAY)= 1 EE: ZE B, @ )ezm(l_bla"'l'rfl—n)
' MNAXAY “hy 47NN
Y2 X 2

(16) .




NOTES WRT EQUATION (16) ViZ,

L - 1n 1l
2 2 an(__)g\_,‘.___}n)
B(nAX ,mAY )= > D B, 0 e M
Y -M -N 1 1
lY=—2— lx=? (16)

(1) CLEARLY THE B ESTIMATES OF (16) APPROACH THE DESIRED

CONTINUOUS IFT YALUES AS {MN} = + 00 AND AS{AX AY)= 0.

(2) THE IMSL "CANNED" SUBROUTINE FFT3D CAN COMPUTE 2D .
DISCRETE INVERSE FOURIER TRANSFORMS BY. COMPUTING SUMS

OF THE FORM
IL JP

M1
n —_—————
A(L+1,P+1)e W) (49

X(I+1,3+1)=

P=0

4
(=

g

(3) THE "2 SIDED" SUMS OF (16) CAN BE MADE AMENABLE TO THE
IMSL “1 SIDED" SUMS BY PROPER SHIFTING OF THE SUMMATION ‘
OPERATORS.

(4) FFT3D REQUIRES THE USE OF THE 2D MATRIX [A] IN (17)
WHICH CAUSES STORAGE PROBLEMS EVEN IF VIRTUAL MEMORY IS Q
INVOKED. THE DOUBLE SUMOF (17) CAN BE WRITTEN AS




i 2RiIL/N
K(I+1,J+1)=), G(L+1,J+1)e
L=0 v
(18)
WHERE

...n

H- \
(L+1,J+1)= A(L+1,P+l]62nlJp/M

P=0

(19)

(5) »ONE CAN A) TRANSFORM ALL OF THE VERTICAL PROFILES
YIA (19), B) ASSIGN INTEGER TAG NUMBERS ONLY TO THOSE
RETURNING  TRANSFORMED  COMPLEX NUMBERS  WHICH
CORRESPOND TO THE HORIZONTAL PROFILES OF THE GGSS
SURYEY GRID, C) SORT THE TAGGED NUMBERS, AND THEN

D) TRANSFORM THE HORIZONTAL PROFILES YIA (18).

(6) DUE TO THE RADIAL SYMMETRY OF THE DESIRED WEIGHT
MATRIX [ B ], ONLY ONE GGSS QUADRANT OF [B] YALUES ARE
NEEDED.

(7) WITH THE EXCEPTION OF THE SENSITIVE B 7, KERNEL, THE
DOMINANT KERNEL VALUES NEAR THE ORIGIN BEGIN TO CONVERGE

WITH "EFFICIENT" CHOICES OF NM AX AND AY.




R

SCENARIO:

(1) ¥ CONTAINS (Ty2,Ty7,T77) SIMULATED GRADIENTS AT ALL

NODES OF THE GGSS AIRBORNE GRID AT ALTITUDE OF H = 600M.

(2) W CONTAINS PREDICTED T, COMPONENTS ALONG THE S N-S

TRACKS OF X = -10,-5,0,5,10KMS., SPACED EVéRY SKMS. FOR ALL -

Y€(-100KM, 100KM) (205 =5(41) TOTAL PREDICTIONS )

(3) U CONTAINS SIMULATED T, GROUND TIE POINT YALUES AS

FOLLOWS:

CASE I 2 TIE POINTS AT (0.-100) AND (0,100)
CASE II: 3 TIE POINTS AT (0,-100),(0,0) AND (0.100)
CASE I1l: 4 TIE POINTS AT (-100.-100)(~100,100)(100 -100)

AND (100,100)
CASE |MAX ABS ERROR MEAN ERROR RMS ERROR
HANKEL 2D DISCR. | HANKEL 2D DISCR. | HANKEL 2D DISCR.
. 340 3.18 098 0.89 1.39 133
. 254 226 -065 -047 117 091
11k 371 351 113 0.99- 149 1.36

®




CONCLUDING PROS, INCONYVENIENCES AND CONS:

—

PROS:

(1) CHRIS" METHOD OF REDUCING THE AIRBORNE GRADIENTS 1S
QUITE CAPABLE OF HANDLING GGSS-SIZED SURVEYS.

(2) THE 2D DISCRETE INYERSE FOURIER TRANSFORM APPROACH OF
EVALUATING THE KERNELS ALLOWS ALL 6 GRADIENT
OBSERYATIONS TO PLAY A ROLE IN THE REDUCTION PROCESS.

(3) ASSUMING A LOCAL QTO 10 PSD MODEL IS AVAILABLE, THE

PRE-DATA REDUCTION TASK OF EYALUATING THE KERNELS CAN
EASILY BE DONE .

(4) NEITHER THE PREDICTION POINTS, OBSERYATION POINTS NOR
TIE POINTS NEED TO BE REGULARLY GRIDDED. -

INCONYENIEN

(1) FORN=M =5056 AND AX = AY = 500 METERS, EACH 2D

DISCRETE IFT PROCESS WOULD TAKE ABOUT 2 HOURS OF CPU TIME

ON CDC/CYBER. (THUS FOR EACH SURYEY AREA, THE 7 NEEDED
IFTs WOULD TAKE ARGUND 14 HOURS.)




(2)TO RIGOROUSLY DETERMINE ERROR ESTIMATES OF THE
PREDICTED SURFACE DISTURBANCE COMPONENTS REQUIRES

[__ —
= [Cyyl 21 (2,1 [A]1+[1Cyyl
[cm,l

‘[__ — -~ —

[Gygl [Cgg*Dyl||[A;]
S

WHERE [A;] = [Blaxay
AND [Ay] = [Cyy 1 (Cy,+Dyl™! = [P] OF SECTION I o
2 WUTH-UU Y '

CONS:

(1) DUE TO THE FINITE LENGTH OF THE GRADIENT OBSERYATION
GRID, PREDICTIONS NEAR THE PERIMETER OF THE SURYEY AREA
WILL BE LESS ACCURATE. (CORNER TIE POINTS CAN HELP).

(2) A ¢TO 10 LOCAL PSD MODEL MUST BE DEVELOPED FOR EACH

SURVYEY AREA.

Y

(3) ALL AIRBORNE OBSERYATIONS MUST BE MADE AT THE SAME
HEIGHT. B




STAGE II SIMULATION RESULTS USING
THE NSWC SYNTHETIC GRAVITY FIELD

by
Dr. W. John Hutcheson
Bell Aerospace Textron
P.0. Box One
Buffalo, NY 14240
ABSTRACT
The GGSS data reduction can naturally be broken down into two stages.
Stage I, characterized as being high frequency and temporal, consists of
deterministic compensations, demodulation and associated filtering. Stage Il
processing is spatial and therefore two dimensional in nature and consists of
synchronous sampling of the gradients passed from the Stage I software, gridding,
terrain corrections, integration, track-crossing adjustments, astrogeodetic tie
point adjustment, downward continuation and two dimensional smoothing.
This paper contains an overview of the Stage II algorithms and a brief
description of the salient operations involved. The main results presented here
are from a simulation study where the NSWC synthetic field was used to drive

the Stage II software. The effects of algorithm error, gradiometer noise and

different tie point configurations are demonstrated.
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TITLE OF PAPER: Stage II Simulation Results Using the
NSWC Synthetic Gravity Field

SPEAKER: Al Jircitano

QUESTIONS AND COMMENTS:

1. Question: Chris Jekeli
What was the white noise of the gradiometer?

Response:
50 E2/Hz

2. Question: Alan Rufty

Were all tracks of predicted answers coincident with the given data tracks?

Response:

Yes, but tne answers degrade minimally as one goes away from the raw data
tracks.

3. Question: Richard Rapp

What was the accuracy of the tie points?

Response:

Approximately 0.1 arcsec for deflectionms and 0.1 mgal for disturbances.
4. Question: John Brozena

Are the tie point data used to constrain the least squares track
ad justments?

Response:

Yes.




GRADIENT INFORMATION IN NEW HIGH DEGREE
SPHERI CAL HARMONIC EXPANSIONS

by
Dr. Richard H. Rapp
Ohio State University
Department of Geodetic Sclence and Surveying

1958 Neil Avenue
Clumbus, Ohio 43210-1247

ABSTRACT
Spherical harmonic expansions can be used to describe the earth's

gravitational field. The resolution of these fields depends on the h.ghest
degree in the field. In the past year several fields to degree 180 (0OSU8l1),
200 (GPM2), 250 (OSU86C/D) and 360 (OSUS6E/F) have become available. Such
fields are needed to compute geoid undulations, deflections of the vertical,
etc., or to provide a reference field for reductions of local data, such as
altimeter or gradiometer data. This presentation will consider the gradient
information in these new fields and will compare solution differences with

formal accuracy estimates to assess the accuracy of these new fields.




" Gradient Information in New
High Degree Spherical
Harmonic Expansions

Richard H. Rapp
15th Gravity Gradiometry Conference

February 1987




Abstract

Spherical harmonic expansions can be used to describe the earth’s
gravitational field. The resolution of these fields depends on the highest
degree in the field. In the past year several fields to degree 180 (0SuU81),
200 (GPM2), 250 (0SuU86C/D) and 360 (OSUSGE/F) have become available. Such
fields are needed to compute geoid undulations, deflections of the vertical,
etc., or to provide a reference field for reductions of local data, such
as altimeter or gradiometer data. This presentation will consider the
gradient information in these new fields and will compare solution
differences with formal accuracy estimates to assess the accuracy of these
new fields.




| HighDegree Fields

Recent Developments

e QOSU8I

» GPM2-1985
» OSU8B6C/D
e OSUBSBG6E/F




New High Degree
Fields

OSU86C, OSU86D

e June 1986 1x 1 Terrestrial Anomalies
e 19851x1 Altimeter Derived Anomalies
e GEML? Potential Coefficients

e OSUB6D Uses Geophysically Predicted
Anomalies

e« OSUB6LC Excludes Geophysically
Predicted Anomalies

 Least Squares Combination Followed By Q
Rigerous Optimal Estimation To n=250




New High Degree

Fields

OSUB6E, OSUB6F

August 1986 30'x30' Terrestrial Anomalies
1985 30'x30' Altimeter Derived Anomalies

Solutions Made By Forcing Mean of
30'x30' Values to Agree with Adjusted 1
Values

OSUBGE - No Geophysical Anomalies
OSUBG6F - Includes Geophysical

Anomalies

Coetfficient to n=360 by Quadratures
(HARMIN)




Accuracy Estimates

Anomalies
Gravity Disturbances
Deflections of the Vertical

Gradients




RMS Values *implied
By OSUB6F Field

Anomaly (mgal)
Disturbance Imgal)
Deflection (secs)

Undulation (m)

Gradient (Tzz)XE)
Gradient (Txx)XE)

* on the surface of a sphere of radius

6371 km




Comparison of RMS Values

*Implied By OSUB6F and
GPM2 to Degree 180

Anomaly (mgal) t24. 6 1268
Disturbance (mgal) +30. 3 322
Deflection (secs) t 6.0 +64
Undulation (m) + 30. 4 :3Q5
Gradient (Tzz)E) t 3.4 +4]

Gradient (Txx)E) 1.7 2]

?

* on the surface of a sphere of radius

6371km




Applications

in Gradiometry

Provide Long Wavelength Information

* Definition of Long Wavelength €500 km)
* Corresponding Degree About 80

* Gravity Disturbances of Prime Intereste

* Accuracy of OSU86D

e Comparison of OSU86F and GPM2
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.Gravity Disturbance Accuracy: OSU86D solution
Gravity Disturbance Difference: OSU86F - GPM2

12.00

H H i H i H H 4 H H H H : ¢ : : -

1]

0.00 ‘150.6
HARMONIC DEGREE




Gravity Disturbance Accuracy: OSUB6D solution @
Gravity Disturbance Difference: OSU86F - GPM2

6.00

O - L o SR S S A -
=
IR e

//// ;

- /
P PO NN U S DG U ISR SN S S “m?.;)//
o % :
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5 «_A"”_._"ﬁq

A;:ga:;.,,

%' 00 15.00  30.00 _ 45.00 60. 00 75.00 90.00
HARMONIC DEGREE




4o

Deflection Accuracy: OSUB6D solutions
Deflection Difference: OSU86F - GPM2

2,00 2,

.60

1
!

.20
|

SECONDS OF ARC
0.40 0.80 1

.00

%. 00 30.00 60.00 90.00 120.00  150.00  180.00

HARMONIC DEGREE




Improved High Degree Fields Exist

RMS Disturbance Accuracy is 4.3 mgal

RMS Disturbance Difference in the US.
Between OSUB6 and GPM2is 2.5 mgal

RMS Global Disturbance Difference is
48 mgal

RMS Total Deflection Accuracy is 0.9 secs
RMS Total Deflection Difference is 1.0 secs

All above values for degrees 2 to 80
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Deflection Accuracy: OSU86D solutions
Deflection Difference: OSU86F - GPM2

1.20

%00 15.00  30.00 45.00 _ 60.00 75.00  90.00
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TITLE OF PAPER: Gradient Information in New High Degree Spherical Harmonic

Expansions

SPEAKER: Richard H. Rapp

QUESTIONS AND COMMENTS:

L.

Question: Charles F. Martin

To what extent 1is the observational data ‘powerful enough to support
harmonic expansion up to degree and order 360°?

Response:

It depends on the quality of data over the areas of interest, i.e., U.S.,
Central Europe, Marianas Trench. Input data of high quality and harmonic
field above 180° provides significant information.

Question: Al Jircitano

Is accuracy of gravity data better in ocean areas or land areas?

Response:

Generally better in land areas. In the US and Europe, the accuracy is about
2-3 mgal in 1° squares; in ocean areas it is about 6-7 mgal in 1° squares.

Question: Warren Heller

What do you see as the primary error sources driving the approximately ¢
mgal of error in harmonics through degree 80?7

Response:

Primarily surface data quality and data omission. (Some discussion of
advantages of considering local areas where data is good; also discussion of
correlation between satellite and terrestrial gravity measurement errors).

Question: Jim Lowrey

Are there any plans to extend the model out beyond 360°?

Resgonse:

Curently there are none; however, an extension out to 720
would be possible although the need for this is questionable.




